Report of the Workshop on The
Relationship between Systems
Engineering and Software Engineering

Hoboken, NJj
June 12-13,2014

»'%;ﬁ /;;
sy STEVENS INCOSE

@ INSTITUTE of TECHNOLOGY
Systems&Enterprises

SYSTEMS ENGINEERING
Research Center

Table of Contents

EXECULIVE SUMMAAIY ..oiiieiiiiiieiiiiiieiiiiiieis et treess s tesassssresassssesnssssesnsssstesnsssssesnsssssesnsssns 3
S 13X o o [V T ot 4o T o PPN 4
2. The Changing Nature of Systems and Software and Its Impact on The Systems and
Software Engineering DiSCIipliNeS.......ccciviiieuuiiiiiiiiiiiiiniiiiiniiiieeiniiieesssssisssssssssas 5
2.1 Horizontal and Vertical Engineering Aspects of Systems and Disciplines.............ccc.... 6
2.2 Three Classes Of SYSteMS......cuceiiiiiiiiiiiiumiiiiiiiiiieienssiiiieiiiierssmsstieermsssssssssessnns 7
3. The Relationship between Systems Engineering and Software Engineering Educational
o 0T - 10 - 9
4. The Relationship Between Systems and Software Engineering Practice..........cccceee..... 12
4.1 How they are developedccoiiiiiieuiiiiiiiiiiiniiieerseesseessssssssrsssssssses 12
4.2 How they are organizedcccoiiiiiieuiiiiiiiniiniiniiinieeeieessssssssssssses 12
4.3 How they are Mmeasured.........ccceiiiiiieuuiiiiiiiiiieinniiiiieeemmiieemmssssssssssssss 13
4.4 HOW they WOTKuiiiiiiiiiiiiiiiiiiniiniiinisiisnnineesesasssssessssesssssssssssssssssssssssssssssssssssansses 13
5. ReCOMMENAAtIONS ccuuuuiiiiiiiiiiiiniiiiieiiiiirinnisiseeitieesessssssssessietrssssssssssssssssssssssssssssssssnes 14
Appendix A. Workshop Leadership and Participants........cccccveereuniiiiiniinnennnniiinnnnneeesene. 15

Executive Summary

On June 12-13, 2014, a workshop was held at Stevens Institute of Technology in Hoboken, NJ
and co-sponsored by Stevens’ School of Systems and Enterprises, the Systems Engineering
Research Center (SERC), and the International Council on Systems Engineering (INCOSE). That
workshop explored the relationship between systems engineering (SE) and software engineering
(SWE) on four topical areas: technology, development approaches, people, and education. We
offer the following conclusions from the workshop, preparation for it, and follow-on discussions:

Findings.

Systems have three dimensions: physical (material, energy, dynamics...), computational
(software, security, protocols, frameworks...), and human (cognitive, social, economic...). Every
system is some combination of physical, computational and human elements that delivers its
intended value. Several useful classes of systems can be loosely defined by recognizing the
relative “weights” of these dimensions. Three classes of systems of particular importance reflect
the role that software plays in their complexity, risk and other key characteristics: physical,
computational and cyber-physical’. We had many discussions without reaching consensus
about what to call these three classes, but the names offered here are certainly reasonable to
frame the discussion in this report.

The gaps between SE and SWE are most critical to the successful development of cyber-physical
systems, but significant challenges remain even for computational systems. These challenges
manifest themselves in how systems engineers and software engineers are educated; how they
are organized and rewarded; and the methods, processes, and tools that are available to them.
For example, university software engineering programs are often light in classical engineering
disciplines such as the physical sciences and continuous mathematics and conversely, systems
engineering programs are often light in software engineering, even though so many systems
developed today are cyber-physical, requiring mastery of both. Industrial organizations often
mimic the educational model by housing software and systems engineers in separate silos,
making it harder for them to collaborate. Changes to address these and other gaps are needed.

Recommendation.

INCOSE and the SERC, together with other interested organizations, should establish and lead
three near-term projects. The first should focus on education, the second on the practicing
workforce and the third on technology and development approaches. Each project should
deliver two primary products:

* A study of today’s practices in its focus area, explaining current strengths and weaknesses;
e.g., the education project should report on SE and SWE education programs worldwide that
already integrate SE and SWE to some extent, including the specifics of their program
curricula and the impact they are having on their graduates.

* A roadmap of research, policy changes, and other activities needed to go beyond today’s
practice to address current weaknesses and reinforce current strengths. The roadmap
should recommend specific activities that should be undertaken, the timeline and scale of
effort required and deliverables that should be produced along the way.

! A fourth category, termed socio-technical systems, was discussed during the workshop but is only
addressed in passing in this report because the scope of these systems extends well beyond that of
systems and software engineering to include a wide range of social science disciplines.

1. Introduction

On June 12 and 13, 2014, 29 professionals’ from academia, government and industry assembled
for a workshop hosted by Stevens Institute of Technology in Hoboken, NJ to examine the
relationship between systems engineering (SE) and software engineering (SWE). The Systems
Engineering Research Center (SERC) and the International Council on Systems Engineering
(INCOSE) co-sponsored the event with the Stevens’ School of Systems and Enterprises (SSE). As
announced, the workshop motivation was:

Software is a critical part of virtually all of today’s interesting systems, driving much of
their complexity and emergent behavior. At the same time, most of today’s interesting
software is tightly integrated with hardware in systems that must operate in the
physical world. This tight coupling of systems and software creates challenges for
system architecture, integration and verification, development cost and schedule, etc.

Systems engineering (SE) and software engineering (SWE) could be practiced in a way
that reflects their mutual dependence, but there are many challenges to doing so; e.g.,
modern software development methods largely favor rapid and agile development,
while hardware development methods often must address lifecycles with longer lead
times and that adapt more slowly to change; and large companies often silo systems
engineers and software engineers into different departments, with separate career
paths, training and tools.

SE and SWE academic programs could be structured to reflect their mutual dependence,
but usually aren’t; e.g., there are few undergraduate or graduate degrees we are aware
of that are offered jointly between SWE and SE programs, and we are aware of a
number of universities where the relationship between the SWE and SE programs is
strained at best.

A focused workshop to explore these challenges in both practice and education could
spawn efforts that might help address them.

Attendees explored four topical areas responding to the workshop motivation:

Development Approaches — the ways in which systems and software engineers could
collaborate on lifecycle approaches that emphasize speed, agility, and other increasingly
important characteristics, and how SE and SWE relate to other management and
technical disciplines

Technical — the relationship between SE and SWE methods, processes and tools

People — the relationship between those who perform SE and those who perform SWE;
their personalities and career paths; and the relationship between how they are
organized, measured, rewarded and motivated

Education — the relationship between how systems engineers and software engineers are
educated and what they learn; the relationship between how universities organize their
curricula, faculty and other resources; what systems engineering should be included in
software engineering curricula and vice versa

2 The list of attendees and the roles they played in the workshop is found in Appendix A.

To frame the exploration, each workshop attendee was offered an opportunity to prepare a
short position paper on one or more of the four topical areas of their choice. Eighteen papers
were written and were distributed to the attendees in advance of the workshop along with
several reference papers.

The plenary session of the workshop included two keynote speakers: Jeffrey Wilcox from
Lockheed Martin and Dr. William Scherlis from Carnegie Mellon University each offered their
perspectives on the relationship between SE and SWE; and also included four panel sessions,
one on each of the topical areas, that explored:

* The current state of that area
* Perceived shortfalls and root causes of those shortfalls

* Specific efforts that could address those shortfalls

The keynote speeches and the panel sessions set the stage for the primary workshop activity, in
which participants divided into four groups, one for each topical area, and dove more deeply
into each topic.

We are delivering two near-term primary products:

* A workshop report, which is this document

* Video recordings of the two keynote talks and four panel discussions (to be released
separately)

If this report’s primary recommendation, as stated in the Executive Summary, is implemented,
there will be additional longer-term products.

The remainder of this report does three things:

* It integrates the findings and recommendations of the several workshop sessions. We
believe this integrated approach maximizes the impact that this report will have and will
make it easier to develop momentum to carry out the workshop recommendations.

* It expands and refines those findings and recommendations based on the white papers
submitted by many of the workshop attendees in advance of the workshop itself.

* It expands and refines exchanges among the workshop leadership that took place
subsequent to the workshop itself.

2. The Changing Nature of Systems and Software and Its Impact on The Systems and
Software Engineering Disciplines

As observed at the workshop by Dr. Bill Scherlis, “Software is the ‘building material of choice’ for
today’s complex systems.” This has impacted the nature of work for both systems engineers
and software engineers. The growing dominance of computation as a source of functionality,
novelty, complexity and risk in the conception, design, operation and evolution of modern
systems, and of software as a primary material for the construction of such systems, are
significantly increasing the overlap in the roles, responsibilities and required expertise of the

historically separate disciplines of SWE and SE. Even “classic” software programs, such as those
used to plan enterprise resources or manage inventories, are typically components of larger
enterprise systems. Increasingly ubiquitous cyber-physical systems depend on tightly integrated
hardware and software (e.g., smartphones, automobiles, and even electric razors), while socio-
technical systems typically contain massive amounts of software, hardware, organizations and
people (e.g., healthcare systems, infrastructure systems, and education systems). In a world in
which systems and software are so inextricably linked in a fundamental way, the disciplines of
SE and SWE must inform each other, and practicing systems and software engineers must work
seamlessly with each other. Indeed, we must revisit the whole notion of how systems engineers
and software engineers are educated, developed and managed, and the methods, processes
and tools they use.

Analyzing the current state of the art and practice in SWE and SE has to begin with an attempt
to clarify the nature and roles of the two disciplines in major systems projects. This analysis
helps characterize the sources and nature of the overlaps that are arising from a combination of
the histories of the fields and current trends in technology, and the key gaps in capability that
remain inadequately addressed today.

A clear, shared understanding of the roles, responsibilities and competencies of SWE and SE, of
their relationships to each other, and of the gaps that the two fields together do not yet
adequately address, remain somewhat elusive. Understanding the current state of the art and
practice and the major remaining gaps requires thoughtful analysis of these issues.

To support this analysis, we introduce a two-dimensional ontology into which we map the two
disciplines as they exist today. The first dimension distinguishes between the vertical and
horizontal dimensions of a system. The second dimension distinguishes three classes of systems
that we call physical, computational and cyber-physical. Mapping the two disciplines as they
exist today into this framework serves to clarify the sources and nature of the increasing overlap
between them and the key areas that remain inadequately addressed.

The overlap and the gaps that remain between the capabilities of the two disciplines and what
the effective development of modern systems actually require must be much better understood
and addressed to enable effective development of future systems.

2.1 Horizontal and Vertical Engineering Aspects of Systems and Disciplines

We begin by separating what we call the horizontal and vertical dimensions of systems, and the
corresponding horizontal and vertical engineering disciplines.

The vertical dimensions of a system are those that modularize around technically focused
engineering disciplines. For example, electrical engineering focuses on electrical and electronic
aspects of systems, mechanical engineering on mechanical aspects, chemical engineering on
chemical aspects, etc. We thus refer to these disciplines as being vertical, or at least as playing
vertical roles in most complex systems projects.

The horizontal technical dimensions of a system, by contrast, involve crosscutting concerns at
the systems level. Such concerns include evolving customer preferences that impact across
entire systems: systems-level quality attributes, tradeoffs and optimization; system architecture,
decomposition and integration issues; system development processes; and system economics:

cost, schedule and risk. We use the term horizontal to characterize these technical concerns,
and to characterize the engineering disciplines that address them.

2.2 Three Classes of Systems

The second component of our ontology separates systems into broad classes, distinguished by
the primary sources of novelty, functionality, complexity and risk in their conception,
development, operation and evolution. The classification is based on the extent to which
computation and software are the principal drivers in these dimensions. We call the three
classes of systems physical, computational, and cyber-physical to reflect the technological
“center of gravity” within the system. The relationship between SE and SWE is most important
in large-scale computational systems and in all but the most trivial cyber-physical systems.

Physical Systems

The first class of systems are those in which physical aspects are the main sources of novelty,
functionality, complexity and risk at the overall systems level, i.e., in the horizontal dimension.
The primary purpose of these systems is to operate on and generate matter or energy. We call
such systems physical systems. While they often utilize computation and software technologies
as components, those components are not dominant in the horizontal dimension of
engineering. Rather, in such systems, they are viewed and handled as vertical concerns.

Examples of such systems include older generations of a broad range of systems: bridges,
vehicles, weapons systems, and healthcare delivery systems from the past that were relatively
“dumb” compared to today’s “smart” systems. Challenges in the horizontal dimension of
engineering are driven by complexity in such areas as physical structure and tradeoffs involving
form factor lock-in, energy and dynamics, properties of materials and structures, analog control
and system economics.

With respect to physical systems, SE has long been involved in the full range of horizontal
engineering activities, created to bridge the gaps between the more traditional engineering
disciplines. Such horizontal activities include requirements engineering, systems architecture,
specification and balancing tradeoffs among quality attributes, human factors issues and SE
economics. SE’s roots go back to the development of systems in which software either did not
exist or was simply not central to system operation and success. SWE has played a much smaller
role in such systems, limited to whatever software components may be present rather than
overall system performance and characteristics.

Computational Systems

The second class of systems includes those in which computational behavior and, ipso facto,
software are the dominant sources of functionality, complexity, novelty and risk at the systems
level. The primary purpose of these systems is to operate on and produce data and information.
We call such systems computational. While these systems always include physical and human
elements, these are not the predominant challenges in system development, operation and
evolution. Examples include operating systems, database management systems, systems
middleware, desktop software systems and even IBM’s “Watson.” The major challenges in such
systems arise from the difficulties involved in conceiving, realizing and evolving complex
computational behaviors and their software representations.

Whereas in physical systems, software and computational elements are largely addressed as
vertical software engineering issues, a very different picture emerges in computational systems.
In these systems, for all intents and purposes, software and computation are the system. The
individual software components of such systems are still best viewed as presenting vertical
software engineering challenges. However, for this class of systems, software engineering has
also historically addressed the full range of horizontal engineering challenges; i.e., software
engineers have typically performed SE activities relying on methods, processes and tools that
were tailored for the engineering of computational systems; e.g., architectural representations
in which physical constraints were relatively unimportant or buffered through a layered
architecture, or perhaps not captured at all, instead focusing on software artifacts, their
behaviors and their interactions with users.

In addition to being a vertical discipline, SWE has historically been the systems engineering
discipline for computational systems. The term software systems engineering has often been
used to describe the blend of SE and SWE for these systems and the term software systems
engineer used to refer to its practitioners. For computational systems, software systems
engineers typically ascertain evolving customer preferences, specify and manage tradeoffs
among quality attributes, develop the software systems architecture, define the overall
development process and perform engineering economics. They are often responsible for
handling SE issues for computational systems.

SWE is rare or unique among engineering disciplines in having both a vertical role in physical and
computational systems and the major horizontal role in computational systems. The source of
the increasing overlap between the disciplines of SWE and SE now becomes clear. First, both
fields have historically evolved to play overall SE roles, albeit for two historically separate classes
of systems. Second, the separation of these classes is now disappearing. Rather than purely
computational systems with relatively simple human-physical components, or physical systems
with relatively simple computational/software elements, we are now entering an era of
incredibly smart cyber-physical systems that depend on the synergistic collaboration of
hardware and software for their functionality. In these systems, physical and computational
elements are nearly equal partners in realizing the system objective. Neither SE nor SWE has
traditionally addressed the horizontal complexities of systems in this realm, and neither
discipline is adequately equipped by itself to do so.

Cyber-Physical Systems

The third class of systems, cyber-physical, has a complex combination of computational and
physical dimensions. Such systems are innovative, functionally complex and risky in both their
cyber and physical dimensions. They pose major horizontal engineering challenges across the
board. Examples of cyber-physical systems increasingly abound — smart automobiles, power
grids, robotic manufacturing systems, defense and international security systems, supply-chain
systems, the so-called internet of things, etc. In cyber-physical systems, cyber and physical
elements collaborate in complex ways to deliver expected system behavior. The systems and
software engineers who create them must do likewise.

Challenges abound for those who conceive of new cyber-physical systems and then develop,
manufacture, operate and evolve them; e.g., adapting them at a rate that can keep up with
outside opportunities and threats in technology, customer preferences, politics and
competition; dealing with unanticipated interactions between the system and its external

environment; responding to unanticipated and emerging behaviors of the system itself;
maintaining critical system quality attributes, such as system security and safety; and mitigating
against the brittleness and complexity in both the system and the development environment
that can come from making such changes.

Cyber-physical systems pose the greatest challenge to SE and SWE and to their practitioners. For
example, many university programs in SWE have grown out of computer science and math
departments and require little in the way of classical engineering courses in physics, electronics,
chemistry, and mechanics. Analogously, many university SE programs have grown up in classical
engineering departments and require little in the way of software engineering expertise from
their students. The result is that graduates of SE programs are well prepared to work on physical
systems, graduates of SWE programs are well prepared to work on computational systems, but
far fewer graduates are well prepared to work on cyber-physical systems. Industry must then
compensate for the “silo-ed” education of such graduates by offering them broadening
assignments, mentoring and training, but companies may lack the ability to do this easily and
well.

There are many practical impacts of the gap between SWE and SE, especially for cyber-physical
systems. For example, software and hardware tend to evolve at different speeds, causing many
changes that occur throughout the system lifecycle to be implemented in rapidly evolving
software. Mature lifecycle models and supporting tools that fully reflect the different speeds at
which hardware and software evolve do not exist. Methods, processes and tools to understand
and predict system-wide behavior in such systems caused by even small changes in software are
lacking.

More specific aspects of the challenges faced by the two disciplines are explored in the next two
sections.

3. The Relationship between Systems Engineering and Software Engineering
Educational Programs

Today most universities manage SE and SWE programs separately, leading to separate masters
and doctoral degrees. Such programs are often housed in different academic units; e.g.,
software engineering degrees are often offered by computer science departments that are not
part of an engineering school; systems engineering degrees, on the other hand, are usually
offered within an engineering school, sometimes by a standalone systems engineering
department, but often by another department such as industrial engineering.

SE and SWE programs could draw from two community-developed bodies of knowledge: the
Guide to the Systems Engineering Body of Knowledge (SEBoK)® and the Guide to the Software
Engineering Body of Knowledge (SWEBOK)’; and they could draw from related curricular

BKCASE Editorial Board. 2014. The Guide to the Systems Engineering Body of Knowledge (SEBokK), v. 1.3. R.D. Adcock
(EIC). Hoboken, NJ: The Trustees of the Stevens Institute of Technology. Accessed 12 July 2014.
www.sebokwiki.org. BKCASE is managed and maintained by the Stevens Institute of Technology Systems
Engineering Research Center, the International Council on Systems Engineering, and the Institute of Electrical and
Electronics Engineers Computer Society.

P. Bourque and R.E. Fairley, eds., Guide to the Software Engineering Body of Knowledge, Version 3.0, IEEE Computer
Society, 2014; www.swebok.org.

recommendations, the Graduate Reference Curriculum on Systems Engineering (GRCSE)® and the
Graduate Software Engineering 2009 (GSwE2009)°. All of these documents attempt to draw out
some of the relationships between SE and SWE, but none do a complete job and none are
universally used. Given the critical role that software plays in today’s most interesting systems,
the academic separation of SE and SWE programs is artificial and leads to students graduating
with missing skills, understandings and perspectives that are important to their success on the
job.

We believe that there is sufficient differentiation between the SE and SWE disciplines that
separate degree programs continue to be appropriate, but also believe that new programs
should be developed that merge the education of these two disciplines, especially to educate
students about the differences between cyber-physical systems and the systems the respective
disciplines have traditionally addressed. Such an integrated SE/SWE degree will require
instructors who have broad experience, as well as substantial cooperation from industry.

We see the major outcome of such an integrated educational program as the development of
individuals who possess:

* T-shaped skills; i.e., having breadth in many technologies, systems types and disciplines
and depth in a small number of them; and,

* Individualized and deep skills that support self-paced and life long learning, yet also
support broad-based team-orientation to foster both leadership and follower-ship.

Moreover, we believe that elements of such a program would be beneficial for all engineers, not
just systems engineers or software engineers.

Realizing that such a desirable future is a fairly tall order, we believe the best approach to
developing such SE/SWE educational programs at the graduate level is to create a technical
Master’s degree with a solid dose of technical leadership that is somewhat analogous to what
would be found in an MBA. Following the typical MBA educational model, we believe that
candidate students who want to enter such a program should come with strong technical
expertise derived from a mix of prior education and practical experience. A new SE/SWE
educational program should draw from many of the classroom mechanisms used in the MBA
context, such as case studies, serious games and group experiences.

There are several critical factors for a successful integrated SE/SWE education, including:

* Offering group experiences to students in a realistic environment — SE and SwWE are team
sports.

* Relying on instructors with broad experiences, including using guest lecturers to
supplement the experiences of the primary instructors.

* Mentoring students on soft skills such as communications, negotiation and leadership.

Pyster, A., D.H. Olwell, T.LJ. Ferris, N. Hutchison, S. Enck, J. Anthony, D. Henry, and A. Squires (eds.).
2012. Graduate Reference Curriculum for Systems Engineering (GRCSE®). Hoboken, NJ, USA: The Trustees of the
Stevens Institute of Technology. Available at: www.bkcase.org/grcse/.

Pyster, A., et al (eds.). 2009. Graduate Software Engineering 2009 (GSWE2009): Curriculum Guidelines for Graduate
Degree Programs in Software Engineering. Hoboken, NJ, USA: Stevens Institute of Technology. Available at
www.gswe2009.org.

10

Instructing with a balance between realism and openness, constraining students to
ensure that they learn intended skills.

Instructing students on historical approaches that are no longer popular with an
emphasis on their limitations and why they have fallen out of use.

SE/SWE programs should be based on several guiding principles, including:

Principles-based: Technologies change rapidly, but the underlying principles by which
systems are developed and managed do not.

Foundation stones: Repeat fundamental ideas in real world contexts to reinforce
learnings.

Agility: Quality course material should be developed in a way that quickly responds to
rapid changes in the SE and SWE environment.

Accelerated Learning: Compress multi-year lifecycle experiences into a much shorter
period of time consistent with university schedules.

Technology Savvy: Uses multi-media and multiple modes, such as gaming, online
courses, social media, peer assessment and crowd sourcing, to provide a rich,
interactive, effective and efficient educational experience.

Context is critical: What we do, what is important, and how hard our actions are all
depend on context, including the system and life-cycle state, the domain of the system,
the nature of the system itself and the balance between opposing system properties.

Reflection and analytical skills: These complement specific technical skills. We must
balance learning from the past with anticipating the future.

Continuous Life-long learning: Students must learn how to continuously learn and to
appreciate the importance of doing so.

T-Shaped Practitioners: Students must learn how to master breadth in many
technologies, systems types and disciplines, while developing depth in a small number
of them. This will require the ability to learn at one’s own pace using any available
materials, seeking mentors and having strong skills in leadership, follower-ship,
communication, active listening, negotiation and other soft skills.

Integrated: Instructors must offer a setting that encourages the integration of multi-
disciplinary skills and a wide range of SE and SWE knowledge in a setting that recreates
the essential characteristics of the practicing environment.

There are a number of knowledge gaps that need to be filled to support an integrated SE/SWE
education, including:

How to integrate the principles, tools and techniques of SE and SWE around such areas
as measurement, architecture, technical debt, complexity, emergence and quality
tradeoffs in ways that reflect scaling up and down, application to different domains and
operating under different constraints.

How to effectively use smaller in-class projects to offer important insights into the
characteristics and challenges of large scale projects — including learning about specialty
areas, such as contracts, learning about later phases of the life cycle, such as operations

11

and maintenance, and thinking from an enterprise perspective, such as conceiving of a
product line.

How to teach soft skills and team dynamics in a form relevant for students in classroom
settings that are heavily constrained.

Creating an extensive, widely available array of case studies that expose students to the
challenges of developing, fielding and operating diverse systems in many domains, while
relying on diverse technologies and operating under a variety of constraints.

4. The Relationship Between Systems and Software Engineering Practice

We identified several key characteristics of the current state of practice among systems
engineers and software engineers. Broadly speaking, these factors address the way systems
engineers and software engineers are developed, the way they are organized and the way they
are measured, as well as the processes they follow and the tools they use.

Perhaps somewhat surprisingly, but consistent with the theme that Jeff Wilcox struck in his
keynote address at the workshop, we found that there are far more similarities between
systems engineers and software engineers in these regards than there are differences.

4.1 How they are developed

Systems engineers and software engineers are usually educated in different
departments and often in different schools within their universities. They have little
opportunity to get to know each other, let alone to collaborate during their educational
endeavors. In fact, the same is often true for the professors who teach them.

While systems engineers often start out in traditional engineering fields such as
electrical and mechanical engineering, and software engineers frequently begin by
developing code, by the time they assume responsibilities at the systems level, both are
typically engaged in common activities such as architecting and integrating, rather than
focusing on detailed design.

There has been an alarming decline in the diversity of entry-level software engineers
over the past 25 years. This is particularly true in the case of women, the percentage of
whom among computer science graduates has fallen from 30% to 12% over that period.

The career growth of both systems engineers and software engineers resembles that of
business leaders more than it does that of traditional engineers. It is often leadership
skills and competencies, such as influencing and persuading that are most responsible
for their success as individuals and the success of their teams.

Often systems engineers and software engineers must rely on their power of influence
rather than positional authority to have an impact. Communications, negotiating and
other leadership skills are central to that influence. However, those seeking roles as
systems and software engineers may undervalue the importance of these skills relative
to traditional technical skills.

4.2 How they are organized

When they enter the workforce, both systems engineers and software engineers often
find themselves organized into the same type of stovepipes they encountered during

12

their educational careers. Housed in separate departments, they once again have few
opportunities to collaborate and to learn from one another.

The difficulties that systems engineers and software engineers have in communicating
with each other are compounded by the fact that project and business managers often
don’t understand what either does. These managers are thus in a poor position to
facilitate communications and collaboration between them or to mediate their
differences.

Systems engineers and software engineers play quite varied roles, often without clear
career paths or clarity about those roles. This makes it difficult for those who work with
them to understand what to expect from them. Many organizations do not use the title
“systems engineer” or “software engineer” for people who perform SE and SWE
activities, making it harder for those around them to understand what they do or to
create an esprit de corps among them.

4.3 How they are measured

Both individuals and organizations are frequently rewarded for adherence to
established processes and precedents, rather than for risk-taking and innovation. This
limits their adaptability in the face of rapidly changing market conditions and evolving
enabling technologies.

Despite continually stressing the importance of teamwork, managers continue to
reward heroes for fixing problems, rather than effective team leaders who prevent the
occurrence of such problems in the first place.

When issues arise, as they inevitably do, systems engineers and software engineers too
often find that more energy is expended on assigning blame than on solving problems.

Cost and schedule metrics are often emphasized over measures of technical
performance.

Software metrics often focus more on how long it takes to write the code than on how
long it takes for the code to work.

4.4 How they work

Both systems and software engineering have become more specialized, fragmenting
both disciplines, diluting their ability to drive holistic systems solutions and driving a
communications wedge between their various sub-specialties

Both systems engineers and software engineers are being required to become more
agile rather than to rely on traditional, plan-driven processes.

SE and SWE tools significantly lag in maturity and capability when compared to the tools
used by other “classical” engineers, such as mechanical and electrical engineers.

There is a growing body of literature exploring the integration of SE and SWE methods,
processes and tools. Among the earliest are Barry Boehm’s 2005 paper The Future of
Software and Systems Engineering Processes and Mark Maier’s 2006 paper System and
Software Architecture Reconciliation. More recent work includes publication of the
Software Engineering Method and Theory (SEMAT) and its supporting kernel and

13

language for software engineering methods, ESSENCE; Boehm also recently published
The Incremental Commitment Spiral Model: Principles and Practices for Successful
Systems and Software; and a new book edited by Ivar Jacobson and Bud Lawson is
expected soon entitled Software Engineering in the System Context.

5. Recommendations

Building on the analysis and findings in this workshop report, INCOSE and the SERC, together
with other interested organizations, should establish and co-lead three near-term projects:

* The Integrated SE/SWE Education Project to:

Study and report on SE and SWE education programs worldwide that already
integrate SE and SWE to some extent, including the specifics of their program
curricula and the impact their graduates are having.

Develop a roadmap on how to go beyond current practice integrating SE and
SWE educational programs, developing guidance for both existing and new
educational programs.

* The Integrated SE/SWE Workforce Project to:

Study and report on how industry and government currently manage the
relationship between their SE and SWE workforces and how well current
practices and policies work.

Develop a roadmap on how to go beyond current practice and to integrate SE
and SWE workforces within organizations, including understanding both
accelerants and impediments to realizing such integration and its expected
impact.

* The Integrated SE/SWE Technology and Development Approaches Project to:

Study and report on how industry and government organizations currently
manage the technologies and development approaches for SE and SWE.

Lay out a specific research agenda to go beyond current practice integrating SE
and SWE technologies and development within organizations, including
understanding where they should be integrated and where they need to be kept
separate.

14

Appendix A. Workshop Leadership and Participants

The workshop was led by Art Pyster from Stevens Institute of Technology and the SERC and by
Rick Adcock from Cranfield University and INCOSE. A technical committee orchestrated the
workshop’s content and success: Rob Cloutier, Deva Henry, Linda Laird, and Mark Ardis, all from
Stevens.

Bill Scherlis from Carnegie Mellon University and Jeff Wilcox from Lockheed Martin gave
important keynote addresses to begin the workshop.

Bud Lawson from Lawson Konsult AB, Mike Pennotti from Stevens, Kevin Sullivan from the
University of Virginia, and Jon Wade from Stevens led the four breakout sessions.

The following additional colleagues participated on panels and in breakout sessions:

Barry Boehm
James Clamons
Dov Dori
Richard Fairley

Michael Gries
David Long
John McDermid
Tom McDermott
Cheryl Mcintyre
Ralph Nelson
Linda Northrop
Anne O’Neil
Chris Paredis
Sarah Sheard
Kaushik Sinha
Linda Snow
Gregg Vesonder
John Watson

University of Southern California/SERC
Harris Corporation

Technion/MIT

IEEE-Computer Society/Software and Systems
Engineering Associates

Rockwell Collins

INCOSE/Vitech

University of York

Georgia Tech Research Institute
Lockheed Martin

IBM

Software Engineering Institute

INCOSE

National Science Foundation

Software Engineering Institute

MIT

Rockwell Collins

AT&T Research

Lockheed Martin

15

